The digital learning ecosystem An efficient management approach to capability development, delivering smarter teams, improved productivity and better business outcome for the managers.
Bridging industry with academia An immersive and collaborative learning experience event, using OilSim simulator, providing highly relevant industry knowledge and soft skills.
The digital learning ecosystem Digitally and seamlessly connecting you, the learner, with pertinent learning objects and related technologies ensuring systematic, engaging and continued learning.
Industry and client recognition
Best Outreach Program Finalist: WorldOil Awards
Overall Customer Satisfaction Score
Training provider of the year: 2013, 14 and 15
Upstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableUpstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableBridging industry with academia An immersive and collaborative learning experience event, using OilSim simulator, providing highly relevant industry knowledge and soft skills.
The digital learning ecosystem Digitally and seamlessly connecting you, the learner, with pertinent learning objects and related technologies ensuring systematic, engaging and continued learning.
We’re here to help!
Ask a question or leave a
comment using our Contact Us
form.
Upstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableUpstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableBridging industry with academia An immersive and collaborative learning experience event, using OilSim simulator, providing highly relevant industry knowledge and soft skills.
Develop measurable skills and capabilities
This five-day course will show how geochemistry and petroleum system modeling can reduce exploration risk for conventional and unconventional (e.g., shale-gas or shale-oil) resources. Lectures will show how forward deterministic computer models use geohistory analysis, boundary conditions, and chemical reaction kinetics to predict the timing of petroleum generation, molecular composition, and extent of overpressure. Factors controlling “sweet spots” will be discussed, including the influence of geomechanics on rock fracturing and producibility and the extent of primary or secondary cracking based on biomarkers, isotope “rollover”, and diamondoids. Discussions will provide guidelines for sample collection and project initiation, how to evaluate prospective source rocks, and how to define petroleum systems through oil-source rock correlation. Participants will learn how to calibrate petroleum system models using data from wells, such as pressure, corrected bottom-hole temperature, and vitrinite reflectance.
The lectures and discussions will be designed to improve the basic understanding of the processes that control the quantity and quality of petroleum and the bulk, molecular, and isotopic tools used to facilitate that understanding. Special emphasis will be placed on identifying pitfalls to correct interpretations. Case studies and exercises will show how geochemistry can be used to solve exploration, production, and development problems while minimizing costs.
The Dynamic Petroleum System Concept
Participants will learn to identify the elements and processes that control petroleum systems and shale resources, as well as learn how they are quantified. Participants will also gain an understanding of the difference between static play fairway maps and dynamic petroleum system models.
Day 2Fundamentals of Model Input
On day two, participants will gain an understanding of the basic geochemical measurements and how to evaluate the quantity, quality, and thermal maturity of source rocks using geochemical logs. Understanding the pitfalls associated with the analytical methods will also be covered. Participants will learn how to reconstruct the original generative potential of a spent source rock and how collect gas, oil, and rock samples for kinetic measurements and oil-oil or oil-source rock correlation.
Day 3Boundary Conditions and Geohistory Analysis
Participants will use geohistory analysis, boundary conditions, and chemical reaction kinetics to predict the timing of petroleum generation, migration, and accumulation. Understanding the effects of paleoclimate and paleolatitude, as well as how to estimate paleowater depth from seismic two-way travel times will be covered. Learning how to calculate heat flow using a bottom-simulating reflector (BSR), how to calculate the change in temperature across a sedimentary layer, and how increased flow due to radioactivity will also be discussed, as well as how McKenzie models describe heat flow and subsidence in rift basins. Participants will learn how to decompact sediments to their original thickness, how to construct a geohistory diagrams corrected for compaction, paleobathymetry and eustasy, and how to use backstripping to determine thermotectonic subsidence.
Day 4Fundamentals of Kinetics and Model Calibration
This day will start with a review of Lopatin TTI and improve participants understanding of thermal maturation based on the Arrhenius equation. Participants will learn how to understand the parameters used to describe kinetic processes and why kerogen type is not directly linked to kinetic response. Participants will also gain insight into pressure and temperature calibration methods and conduct risk analysis to determine the mostly likely value of a probability distribution.
Day 5Unconventionals, Case Studies, and Conclusions
On the last day, participants will learn about the key differences between conventional and unconventional resources and how to predict sweet spots using various methods, such as oil saturation index, geomechanics, stable carbon isotope rollover, and play chance mapping. Worldwide case studies and exercises will help participants gain expertise, which will allow for better communication with colleagues and clients.
This course is intended for oil and gas professionals who want an overview of Geochemistry and Petroleum System Modeling. It is suitable for exploration, production, and development geologists.
A basic knowledge of chemistry and geology.
Currently there are no scheduled classes for this course.
Click below to be alerted when scheduled
Your course has been added to the wishlist
Customize your own learning journey and track your progress when you start using a defined learning path.