The digital learning ecosystem An efficient management approach to capability development, delivering smarter teams, improved productivity and better business outcome for the managers.
Bridging industry with academia An immersive and collaborative learning experience event, using OilSim simulator, providing highly relevant industry knowledge and soft skills.
The digital learning ecosystem Digitally and seamlessly connecting you, the learner, with pertinent learning objects and related technologies ensuring systematic, engaging and continued learning.
Industry and client recognition
Best Outreach Program Finalist: WorldOil Awards
Overall Customer Satisfaction Score
Training provider of the year: 2013, 14 and 15
Upstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableUpstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableBridging industry with academia An immersive and collaborative learning experience event, using OilSim simulator, providing highly relevant industry knowledge and soft skills.
The digital learning ecosystem Digitally and seamlessly connecting you, the learner, with pertinent learning objects and related technologies ensuring systematic, engaging and continued learning.
We’re here to help!
Ask a question or leave a
comment using our Contact Us
form.
Upstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableUpstream learning simulator With more than 50,000 participants instructed in various disciplines, data driven OilSim runs real-world oil and gas business scenarios and technical challenges.
Engaging. Educational. EnjoyableBridging industry with academia An immersive and collaborative learning experience event, using OilSim simulator, providing highly relevant industry knowledge and soft skills.
Develop measurable skills and capabilities
Course description
The aim of the course is to introduce how Machine Learning (ML) is used in predicting fluids and lithology. It will give an understanding of the “workflows” used in ML. The used algorithms can be studied separately using references. Power-point presentations and videos will introduce various aspects of ML, but the emphasis is on computer-based exercises using open-source software.
Learning methods and tools
At the end of the course participants will have a clear idea how Machine learning, being part of Artificial Intelligence will impact the future of Geosciences. This will be evident from the examples of Machine Learning discussed and applied to the case of predicting lithology and pore fluids.
Introductory material
Part 1Part 2Part 3Part 4Part 5AgendaPart 1
Part 2
Part 3
Part 4
Part 5
Project clustering and classification Urania
All those interested in understanding the impact Machine Learning will have on the Geosciences and then as an example the impact on lithology and pore-fluid prediction. Hence, geologists, geophysicists and engineers, involved in exploration and development of hydrocarbon or mineral resources and those involved in geothermal and CO2 storage, where data and targets are often difficult to establish.
The lectures and exercises deal with pre-conditioning the datasets (balancing the input classes, standardization & normalization of data) and applying several methods to classify the data: Bayes, Logistic, Multilayer Perceptron, Support Vector, Nearest Neighbour, AdaBoost, Trees. Non-linear Regression is used to predict porosity. Use will be made of an open-source package called Weka. The reason is that it is a user-friendly package with most relevant Machine learning algorithms, except truly Deep Learning. This suffices for most exploratory applications, where we like to learn the workflows and applications of Machine learning. Therefore, I have included an introduction to Google Colab. This runs on the Cloud and allows use of a GPU. It is “the way†to learn using a whole range of open-source Machine Learning algorithms. In an exercise you will get acquainted with using interactive python notebooks, how to get algorithms using Scikit-Learn (sklearn) and if you restrain yourself from using it in earnest on large datasets, it is free.
A basic understanding of Geophysics and Statistics. A Pre-requirement quiz can be taken by participants to check whether their knowledge of Geophysics and Statistics is sufficient to follow the course.
Currently there are no scheduled classes for this course.
Click below to be alerted when scheduled
Your course has been added to the wishlist
Customize your own learning journey and track your progress when you start using a defined learning path.